3D ручка. История создания.

3D ручка. История создания.
3D-ручка
FDM печать стала логическим развитием станков с числовым программным управлением. Единственным принципиальным отличием стало использование специализированной насадки (экструдера) для плавки и подачи пластика. По той же логике получили развитие и термоклеевые пистолеты, широко распространенные в быту. Использование термопластиков вместо термопластичного клея позволяет использовать подобные устройства, получившие названия 3D-ручек, в качестве ручных устройств аддитивного производства.

История
Первенцем нового направления развития 3D-печати стала ручка 3Doodler от компании Wobbleworks.
Команда обратилась к площадке Kickstarter для сбора средств, необходимых для воплощения проекта в жизнь.
Поставив целью собрать $30 000, компания Wobbleworks сумела привелечь более двух миллионов долларов к моменту окончания кампании, что говорит о высоком интересе публики.

На фоне успеха 3Doodler прокатилась конкурентная волна. На данный момент ассортимент 3D-ручек включает в себя фактические клоны 3Doodler – такие, как 3DYAYA или SwissPen, а также более оригинальные разработки, включая Dim3W и LIX.

Основной принцип работы всех этих устройств одинаков, но имеются и некоторые конструктивные особенности, направленные на совершенствование достаточно молодой концепции.

Конструкция
В сущности, 3D-ручка есть не что иное, как ручной экструдер. В роли ЧПУ станка выступает сам пользователь.
Основные элементы 3D-ручки: сопло, механизм подачи пластиковой нити, нагревательный элемент, вентилятор для охлаждения верхней части сопла и ручки в целом, микроконтроллер для управления работой вентилятора, механизма подачи и нагревательного элемента.
Так как практически все программные функции 3D-принтеров выполняет сам пользователь, 3D-ручки не требуют соединения с компьютером или создания цифровых моделей. Требуется лишь электропитание – как правило, используются обычные блоки питания с преобразователем напряжения 12В.
Как и в FDM-принтерах, нагрев сопла занимает несколько минут, после чего ручка готова к печати. Подача материала осуществляется при нажатии соответствующей кнопки. Некоторые модели, например Dim3W, оснащаются регулятором скорости печати.
Также возможно наличие реверса протягивающего механизма. Эта функция позволяет быстро извлекать пластиковую нить из ручки и заменять ее материалом другого цвета.

Материалы
На данный момент в качестве материалов для 3D-ручек используются два самых популярных пластика в FDM 3D-печати – ABS-пластик и органический, биоразлагаемый полилактид (PLA-пластик). Теоретически, возможно применение и других материалов – поликарбоната, нейлона и т.д. В то же время, существующие модели не дают возможности точной регулировки температуры сопла, важной при переходе на другие материалы. Температурные характеристики заложены в прошивке. В будущем можно ожидать большего разнообразия ассортимента материалов и возможность точной настройки температуры, если будет соответствующий спрос.
Как и полноценные FDM принтеры, 3D-ручки используют термопластиковые нити диаметром 1,75 или 3мм. Для удобства работы с ручкой, нити, как правило, поставляются в виде обрезков, а не катушек, но в конечном итоге все зависит от выбора пользователя.

Применение
3D ручки позиционируются, как средство для творческой работы, трехмерного рисования. Хотя устройства действительно могут выполнять такую роль, создание более-менее приличных на вид моделей требует серьезной сноровки.
Однако изначально 3D-ручки задумывались совсем для другой цели, аналогичной с целью своих прародителей – термоклеевых пистолетов. Речь идет о ремонте. Дело в том, что некоторые виды пластиков, используемых в FDM 3D-печати (например, весьма популярный ABS-пластик), имеют высокую степень усадки и склонность к деформациям при неравномерном охлаждении. Все это зачастую приводит к растрескиванию изготовляемых моделей. 3D-ручки должны были стать инструментом для ручного ремонта напечатанных моделей. Эти устройства позволяют заполнять пропущенные слои или разломы.
Особенно хороших результатов можно добиться при аккуратной обработке трещин ацетоном, растворяющим ABS-пластик. Размягченная таким образом поверхность будет хорошо схватываться со свеженанесенным с помощью 3D-ручки пластиком
Поверхность отремонтированного участка можно выровнять за счет шлифовки и аккуратной обработки тем же ацетоном. Аналогичным образом можно подвергнуть ремонту и бытовые изделия – многие из них выполняются из того же ABS-пластика, получившего широкое распространение в промышленности.
Что же касается применения в художественных целях, 3D-ручки придутся по душе тем, кто любит рисовать и желает перейти с двухмерных зарисовок к трехмерным физическим моделям.
Основная сложность заключается в чисто человеческих ограничениях – любое нежелательное движение руки отразится на качестве исполнения модели, особенно при рисовании модели «в воздухе».
Одним интересным способом повышения качества стало деление моделей на составные части с использованием зарисовок на бумаге в качестве шаблонов. Готовые же детали просто склеиваются вместе.
Таким методом вполне можно выполнить неплохую репродукцию Эйфелевой башни.
Само собой, метод применим лишь при создании частей моделей с относительно плоскими поверхностями.
Весьма многообещающей является возможность применения разновидности 3D-ручек в медицине.
Такие устройства, называемые «биоручками» (BioPen) испытываются в качестве инструментов для нанесения слоев живых клеток, смешанных с биополимерами, выполняющими роль поддерживающих матриксов и содержащих необходимые питательные вещества.
Оригинальная 3D-ручка BioPen была разработана австралийскими учеными из ASEC и предназначена для ремонта хрящевых и костных тканей.
При хирургическом вмешательстве PioPen позволяет врачам «закрашивать» поврежденные участке костной или хрящевой ткани, стимулируя восстановительный процесс.
Вслед за технологией FDM, адаптации для «ручного» применения подверглась и фотополимерная 3D-печать. Проект CreoPop предлагает новаторский дизайн 3D-ручки, основанный на экструзии жидкой фотополимерной смолы, затвердевающий на выходе под воздействием ультрафиолетового излучателя. В отличие от FDM ручек, такое устройство не представляет угрозы ожогов – в конструкции нет никаких горячих элементов. Кроме того, фотополимерные смолы известны широким выбором физических свойств – здесь и твердые материалы, и резиноподобные, и даже магнитные. Стоимость таких устройств будет достаточна невысокой, на уровне FDM 3D-ручек, но стоимость расходных материалов сделает этот метод 3D-рисования несколько более дорогостоящим.


Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *